3N3
is unpredictable
US. TALK.
BYEBYE.
Cheera Hazhmirra
Jermaine
Jingsheng
|
Teacher-in-charge: Mr chio Students: Adlin, Diyanah, Elisa, Grace, Jermaine, Jingsheng, Pauline, Qianwei, Saiful, Tabatha, Vinis, Wende, Zongxian, Thursday, April 8, 2010
10:37 AM
⇨
The boiling point of an element or a substance is the temperature at which the vapor pressure of the liquid equals the environmental pressure surrounding the liquid.[1][2] A liquid in a vacuum environment has a lower boiling point than when the liquid is at atmospheric pressure. A liquid in a high pressure environment has a higher boiling point than when the liquid is at atmospheric pressure. In other words, the boiling point of liquids varies with and depends upon the surrounding environmental pressure and elevation. Different liquids boil at different temperatures. The normal boiling point (also called the atmospheric boiling point or the atmospheric pressure boiling point) of a liquid is the special case in which the vapor pressure of the liquid equals the defined atmospheric pressure at sea level, 1 atmosphere.[3][4] At that temperature, the vapor pressure of the liquid becomes sufficient to overcome atmospheric pressure and lift the liquid to form bubbles inside the bulk of the liquid. The standard boiling point is now (as of 1982) defined by IUPAC as the temperature at which boiling occurs under a pressure of 1 bar.[5] The heat of vaporization is the amount of energy required to convert or vaporize a saturated liquid (i.e., a liquid at its boiling point) into a vapor. Liquids may change to a vapor at temperatures below their boiling points through the process of evaporation. Evaporation is a surface phenomenon in which molecules located near the vapor/liquid surface escape into the vapor phase. On the other hand, boiling is a process in which molecules anywhere in the liquid escape, resulting in the formation of vapor bubbles within the liquid. norazlinda and nurazreena |